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ABSTRACT 
Computer vision is applied in an ever expanding range of 
applications, many of which require custom training data to 
perform well. We present a novel interface for rapid collection 
and labeling of training images to improve computer vision-
based object detectors. LabelAR leverages the spatial tracking 
capabilities of an AR-enabled camera, allowing users to place 
persistent bounding volumes that stay centered on real-world 
objects. The interface then guides the user to move the cam-
era to cover a wide variety of viewpoints. We eliminate the 
need for post-hoc manual labeling of images by automatically 
projecting 2D bounding boxes around objects in the images 
as they are captured from AR-marked viewpoints. In a user 
study with 12 participants, LabelAR significantly outperforms 
existing approaches in terms of the trade-off between model 
performance and collection time. 
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CCS Concepts 
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INTRODUCTION 
Computer vision is being used in an increasing number of 
user-facing systems. Deep neural networks used in modern 
computer vision can require copious amounts of training data. 
Modern applications often rely on large datasets (10-200GB) 
to train these models. Often these datasets are collected by 
scraping the internet for existing images and then manually 
labeling them, for example through crowdsourcing [9]. 

However, existing datasets produced in this fashion do not 
cover the “long tail” of use cases — where users have a need 
to detect specific classes of items that are not already labeled 
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Figure 1. LabelAR uses augmented reality to speed up and structure the 
in-situ collection of images and labels for training object detectors. 

in existing datasets. An example would be that we may want 
to ask a robot to “bring me my jacket.” Although there is 
plenty of training data of jackets, there are no efficient ways 
to collect training data for a specific instance of a category 
(“my jacket”). Another example is needing a vision system 
to distinguish between different types of industrial hardware. 
Datasets for such fine grained categories can be difficult to 
source due to the effort needed to collect them. 

Existing approaches to overcome this bottleneck include par-
allelizing the labeling task with post-hoc annotation tools [38] 
or simple camera interfaces to guide image collection such as 
putting a bounding box in a viewfinder to avoid post-collection 
labeling [15]. The first approach can produce high quality data 
but is a very time intensive process that scales linearly with 
the number of objects that have to be labeled. The second 
approach is significantly faster, but produces lower quality 
data, as the bounding box accuracy is compromised. 
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Figure 2. LabelAR produces additional training data to adapt computer 
vision models to detect additional objects in a user’s environment. 

We propose LabelAR, an augmented reality interface that al-
lows users to rapidly collect and label high quality training 
image datasets for computer vision (see Figure 1). LabelAR 
is applicable to any setting where a user needs to adapt a com-
puter vision object detection model (see Figure 2). Transfer 
learning is a technique that can leverage a model pre-trained on 
large datasets to recognize new objects. Training data needed 
for transfer learning needs to be situated in context and diverse 
in viewpoint variety. 

Two illustrative use cases where such adaptation is necessary 
are augmented reality assembly and home robotics. In aug-
mented reality assembly, a worker employs a head-mounted 
AR device to project visual, step-by-step instructions that 
demonstrate how to assemble a collection of object parts. Ob-
ject detection can be used for identifying and tracking particu-
lar parts throughout the assembly. A recent study concluded 
that better tracking capabilities are still needed for AR assem-
bly to be sufficiently robust for industrial applications [11]. In 
home robotics, a robot owner would adapt a computer vision 
model for use on a robotic platform to recognize individual 
items in a household that may be significantly different from 
items in existing training sets. 

Our interface design is based on the observation that com-
puter vision model performance depends on the quality of the 
training data. Two important aspects of high quality training 
data are accurate bounding boxes for labels and a diversity of 
images (orientations, scales, etc.) of the objects to be recog-
nized [5]. Our interface embodies the following two insights: 

First, AR spatial tracking enables users to quickly and ac-
curately place spatially stable 3D bounding volumes around 
objects in their environment, which can be automatically trans-
ferred to 2D bounding boxes at any camera angle (Figure 1). 

Second, interactive guides in the AR interface can prompt the 
user to collect training data instances of the bounded objects 
from many viewpoints. We show that these appearance vari-
ations combined with accurate bounding box labels improve 
detection accuracy. 

Through empirical experimentation, we show that our inter-
face enables a better trade-off between time costs and model 
performance than existing baseline methods. We conduct 
a user study with 12 participants that compares collection 
times and model performance (when trained on collected im-
ages) between LabelAR and two alternative interfaces [38][15]. 
Compared to post-hoc labeling (with free-form camera), col-
lection times improved by over 2× on average with LabelAR 

(p<0.001), while model performance was similar. Compared 
to an existing rapid collection application, model performance 
increased by a factor of 5× on average (p<0.01), while col-
lection times increased only by 27%. Additional empirical 
analysis shows that the equally spaced viewing angle intervals 
afforded by LabelAR are effective for low-sample learning 
and fast computer vision model training. 

The main contributions of this work are the design, implemen-
tation and evaluation of an augmented reality interface for fast 
computer vision image collection. We demonstrate both AR-
capable smartphone or head-mounted device implementations 
and show gains in collection time and model performance over 
existing approaches. 

RELATED WORK 
Prior work falls in the areas of image collection methods, post-
hoc labeling interfaces, and other spatial user interfaces for 
interacting with 3D content. We review each area in turn. 

Image Collection 
Several projects seek to shorten or eliminate post-hoc labeling 
time through novel capture-time interfaces and techniques. 
Raptor [15] modifies the camera interface by overlaying a 
pre-sized bounding box. The user points it to a new object, 
ensuring it is displayed within the pre-defined box area. Since 
the object is fit to the box with known image coordinates, 
there is no subsequent labeling task required. However, this 
results in images that are all collected at the same scale. The 
Doubleshot technique [37] asks users to take two images, one 
with the object, one without the object (my manually removing 
it) to automatically calculate labels. 

Recent work at the intersection of cognitive development and 
computer vision shows deep neural network categorization 
performance can be improved by increasing the variety of 
viewing angles at which training images are collected. [5]. We 
seek to exploit AR to guide the user to capture such a variety 
of images. 

Sermanet et al. [30] use a two-person collection strategy for 
capturing multiple views of an object simultaneously. This al-
lows training to be “self-supervised”. Our work differs in that 
it uses spatial tracking and user-placed 3D bounding volumes 
to create labeled images. 

Another set of collection approaches use head-mounted cam-
eras to collect video along with separate audio recording de-
vices to allow the user to speak the labels verbally, either 
simultaneously [33] or immediately after video collection [7]. 
Both of these approaches rely on speech recognition APIs to 
extract functional labels from the user recordings. While these 
prove effective for categorization labeling, they do not aid in 
the placement of bounding box labels. 

Other approaches employ robots to perform the image col-
lection [34, 21, 25]. The Amazon Robot Picking Challenge 
shows joint collection and labeling applied to a challenging 
real-world task [39]. They use a robot arm to capture mul-
tiple angles of a single object and, with knowledge of the 
background, automatically obtain segmentation labels by fore-
ground masking. The idea behind LabelAR is similar, but 



    

        

   

    

    

        

   

    

our application guides people to collect the images. Further-
more, LabelAR is applicable to more than one object at a 
time and does not rely on prior knowledge of the background 
appearance. 

There are a few interfaces that guide user viewing angle. Vu-
foria PTC provides a single-object capture interface for 3D 
model construction [18]. Ours is a multi-object capture inter-
face, which is crucial for the purpose of deep learning based 
multi-object detection. Google Photo Sphere is a panoramic 
image capture interface that guides users to orient their phones 
according to an inside-out, spherical collection structure [23]. 
Ours differs by guiding the user to look inward toward a 
bounded group of objects. We take inspiration for the align-
ment interface design from Photo Sphere. 

Interfaces for Post-Hoc Labeling 
Image and video annotation for computer vision model train-
ing and adaptation is typically done via web interfaces where 
a human annotator sits at a terminal and uses a mouse to draw 
bounding boxes or segmentation boundaries on various objects 
of interest [19]. 

Web-based 2D bounding box labeling interfaces such as La-
belMe [29] have been integral in constructing some of the 
most influential computer vision data-sets to date [12, 9], al-
lowing labeling tasks to be distributed in the form of global 
crowdsourcing campaigns. 

There are a few works that use 3D labeling tools to label 
a 3D scene, then leverage the 3D labels to generate large 
amounts of 2D labels [35, 6]. Our work makes use of 3D to 
2D label transfer, but for real-time collection of interactive 
objects rather than post-hoc passive labeling of 3D scenes. 

Several works leverage interactivity between the learner and 
predictive model to reduce human labeling time and effort 
by having the model predict labels that can then be approved 
or improved by the user [3]. Crayons [13] uses a simple 
interactive painting metaphor to reduce classifier creation time. 
A more recent approach incorporates interactivity into web-
based crowdsourcing tools showing that interactive modes can 
reduce the number of annotator mouse-clicks by as much as 
50 percent [1]. CueFlik [2] presents a design and evaluation of 
new approaches to guiding users in selected training examples 
interactively based on model predictions. Our work does not 
incorporate interactivity in this sense, rather it focuses on 
the interaction between the user and real-world objects of 
interest. Eye-patch [24] is a tool for designing camera-based 
interactions. The authors identify a need to accelerate the 
example-collecting process as a result of their deployment, 
which is aligned with LabelAR’s goals. 

Spatial User Interfaces for Interacting with 3D Objects 
Technologies and interaction techniques for spatially tracked 
screens and near-eye displays have been a focus of HCI re-
search since pioneering efforts by Sutherland [31], Fitzmau-
rice [14] and others. A number of spatial interaction tech-
niques can now be found in the literature — e.g. in surveys by 
Hinckley [16] and Argelaguet Sanz [4]. Early interfaces such 
as Peephole Displays [36] and the Boom Chameleon [32] used 

Figure 3. Process for extracting two dimensional bounding boxes from 
virtual bounding volumes. 1 - a virtual bounding volume is placed over a 
real object, 2 - the corners (red) of the volume are projected into camera 
space, 3 - a min/max is taken over those points to find a two dimensional 
bounding box (green), 4 - annotations are saved for the object. 

translational and rotational tracking of a hand-held display to 
navigate, view and annotate with large virtual maps and 3D 
models, respectively. Most relevant to LabelAR are interfaces 
for Situated Modeling where real-world context is used to cre-
ate and place 3D geometry such as our bounding volumes [20, 
17]. Our contribution differs in that our created 3D geometry 
is a means towards the end of collecting image sets and we 
study the benefits of such an approach for computer vision. 

LABELAR INTERACTION DESIGN 
At a high level, LabelAR seeks to lower the time that a user 
needs to spend collecting and annotating images of objects 
for training neural networks. We identified two key areas for 
improvement in existing workflows. 

Hand annotating bounding boxes: hand annotated bound-
ing boxes are often pixel perfect and very high quality, but 
take a long time to author. Today, this process is sometimes 
parallelized through crowdsourcing, which reduces time but 
not the total amount of labor required. We hypothesize that AR 
technology can automate the process of producing bounding 
boxes to a high degree, given an initial 3D bounding volume 
of an object. 

Capturing a large variety of training examples: large train-
ing data sets are needed to train computer vision models. We 
hypothesize that offering a guided experience with feedback 
to the user about how much of a variety they have collected 
can help them produce smaller training sets that will result in 
better model performance. 

Placing 3D Bounding Volumes 
In existing workflows, when annotating a series of images that 
contain the same objects, users have to annotate a given object 
multiple times. LabelAR speeds up this process by asking the 
user to place a bounding volume around an object once, and 
then tracks it in all subsequent images. 

To this end, we utilize AR technology. One of the important 
technologies in AR devices is the ability for them to self-
localize, e.g. using SLAM [8]. This allows virtual objects to 
be placed in the real world environment, and for their positions 
and orientations to remain coherent. 

LabelAR allows users to place virtual bounding boxes 
(holocubes) over objects in the environment so their positions 



 

    

 

 

    

 

Figure 4. Left: Users can move, re-size, and rotate bounding volumes by 
interacting with the TRS widget. Right: Markers indicate where good 
potential images should be taken from next, and change color to indicate 
the user’s proximity to the correct location (red) or if they have already 
captured an image at that location (green). Images are automatically 
captured when the user is in position and the two targeting circles align. 

can be tracked. When an image is taken in our interface, the 
two-dimensional bounding box can be computed for every 
object in the scene by projecting the holocube into the video 
frame and finding the bounding box of its vertices (Figure 3). 
It is thus important that the holocubes fit the size and shape of 
the objects of interest as closely as possible. To this end, we 
provide users translation, rotation, and scaling (TRS) widgets 
to manipulate the 3D position and size, as well as rotation 
around the axis normal to ground plane of the holocubes. The 
interaction design for the TRS manipulators mimics conven-
tional widgets in 3D graphics software (Figure 4). 

Users can also place cubes over multiple objects. In tradi-
tional approaches, the labeling effort grows as the product 
of images × ob jects, which becomes prohibitive for long se-
quences containing many objects. In LabelAR, each additional 
object to be captured only incurs the one-time effort of placing 
and adjusting another bounding volume. 

Encouraging Diverse Image Perspectives 
LabelAR helps users collect a wide variety of images of given 
objects. In particular, it directs users to capture objects from 
many azimuth and altitude angles. To accomplish this, we 
provide an interface to assist users in taking pictures of their 
objects. LabelAR will automatically take a picture if the 
user has a significantly different viewpoint than all previous 
pictures taken. This encourages the user to move the camera 
around the objects they wish to capture to ensure they get a 
variety of angles. 

To facilitate this movement, our interface shows the user where 
they have already taken pictures and suggests new positions at 
which to take pictures while also requiring them to keep the 
holocubes in frame. 

We visualize this constraint to the user as a series of rods 
that we refer to as markers (Figure 4). Rods were chosen 
as they are the simplest shape that indicates a directional 3D 
vector. Markers change their color as users approach the 
correct position, providing them with real-time feedback about 
their progress. There is also a targeting cursor to direct the 
camera’s orientation (Figure 4). A target for the cursor appears 

Figure 5. The platform-specific translate, rotate, scale widget in the 
HoloLens version of the interface. (Sub-picture shows interface in use) 

at the location in space that the user should point the camera 
to. Images are taken for the user automatically as soon as they 
are in position and the targeting cursors are aligned. The rods 
turn from red to green to notify the user when and where they 
have captured images. 

IMPLEMENTATION 
We implemented LabelAR on two different AR platforms: 
hand-held, video-see-through on iOS devices, and head-
mounted AR using Microsoft’s HoloLens. Both versions were 
developed in the Unity game engine. A custom application 
was written to perform the function of LabelAR, and platform 
APIs were used to tie into hardware-specific features. In de-
velopment, we tested LabelAR on the HoloLens, iPad Pro, 
and iPhone. With some sessions exceeding 1 hour, there was 
noticeable fatigue with the HoloLens due to hand gestures and 
head pointing, and with the iPad which was heavy to hold with 
one hand while the other manipulated the holocubes. We did 
not experience fatigue with the iPhone, and although there is 
substantial waving, we found no strains of the shoulder as with 
HoloLens hand gesturing. Therefore we selected the iPhone 
interface as the only interface tested for the study. 

The iOS version of LabelAR uses Apple’s ARKit library, in 
particular the camera localization and plane detection func-
tionality. As surfaces in the environment are detected, they are 
converted into planes that can be utilized in a Unity applica-
tion. When the user places holocubes, they are automatically 
snapped to surfaces by performing raycasts onto these planes. 
To create new cubes, the user can press and hold a “new object” 
button that hovers a cube in front of them, which they can drop 
onto a table. Interaction with the holocubes and interface hap-
pen with the device’s touch screen. When running ARKit apps 
on iOS, the camera is put into a special video mode that has a 
different field of view than the standard camera mode. Because 
of this, images are saved directly from the Unity rendering 
pipeline to make sure that the projected bounding boxes are 
guaranteed to line up. We downsample these images before 
saving to improve serialization times, and because many cv 
model training pipelines downsample training data. Images 
are saved at 960× 540 resolution, and annotations are saved 
in the COCO JSON format [22]. Images and annotations are 
automatically saved to the persistent storage of the application, 
which can be downloaded through XCode. This was chosen 



 

 

 

 

 

 

 

 

 

instead of saving images to the iOS Photos app so that images 
and annotations could be co-located. 

The HoloLens version (Figure 5) uses Microsoft’s Mixed Real-
ity Toolkit (MRTK), which contains a set of assets for building 
native HoloLens applications within Unity. Interactions on 
the HoloLens are performed by using the standard gaze plus 
thumb-and-index-finger pinch gesture. MRTK contains a set 
of widgets for manipulating the size and orientation of virtual 
objects, so these were used in lieu of our own TRS widget. Ob-
jects are moved by using the built in hand tracking detection 
native to the hardware. Interacting with screen space inter-
face elements has some issues on head mounted AR devices 
because the interactions are gaze driven, so we opted to use 
the phrase detection and dictation engines available on the 
hardware to allow the user to place new holocubes and initiate 
or stop the capture process. Images are saved at 1280 × 720 
pixels. Captured images and bounding boxes are sent over a 
network connection to a server for collection, and bounding 
box data is converted into COCO JSON format. 

EVALUATION 
We conducted a user study along with supporting ablation 
experiments to answer the following questions: 

1. Is AR based data collection faster? How much time does 
it take to collect and annotate images compared to existing 
baseline methods? 

2. Does our AR interface result in better object detection 
models? Does training on data collected via our interface 
result in a better model than training on data captured with 
other baseline collection-and-labeling methods? 

3. How accurate are the labels produced by AR-based im-
age collection? 

4. How sensitive is detection performance to design 
choices such as the number of angles presented in the 
guidance interface? 

Our goal in defining an experimental setup was to portray a 
challenging object detection task in an environment that is 
both realistic and representative of plausible of use-cases. We 
constrain the problem to the computer vision task of multiple 
object detection: That is the joint task of categorizing and 
localizing (via bounding boxes) any instances of a predefined 
set of objects. This is the type of problem that would need to 
be solved for the motivating in home robotics and augmented 
reality assembly scenarios. 

Variables 
The primary independent variable in our study is the inter-
face used to capture and label images. We compare LabelAR 
to two baseline methods: free-form image capture with post-
hoc annotation using the Scalabel tool [38]; and 2D guided 
capture using using an overlayed 2D bounding box collection 
tool, such as the one in the Raptor project [15]. Thus we 
have one independent variable with three levels: 1) LabelAR; 
2) Post-hoc annotation; and 3) overlayed bounding box in-
terface (referred to henceforth as “post-hoc” and “overlayed” 
interfaces). 

The two primary dependent variables in our comparative 
study are collection time for an image set and object detection 
model performance when trained on collected images. We de-
fine collection time as the total time required for a participants 
to capture and completely label a set of images for 5 objects, 
each from multiple angles. 

Collected image sets are used to train Faster R-CNN mod-
els [26] which are then evaluated on hold-out test sets. We 
define detection performance as the average precision (AP) at 
a given intersection-over-union (IOU) threshold. IOU is the 
area of intersection of two boxes (predicted vs. target) divided 
by the area of their union. AP is a standard metric for object 
detection in popular computer vision benchmarks [22]. We 
chose to investigate IOU thresholds of 0.25 and 0.5. 

We also investigate bounding box accuracy on collected im-
ages by calculating IOU between sets of randomly chosen 
participant-collected images and gold-standard labels cre-
ated by researchers. Finally, we collect qualitative feedback 
through a post-study survey. 

Participants 
12 participants were recruited through email invitations sent to 
the departmental list-serves of the EE and CS departments at 
our university. The mean age was 26.4 years. 9 of the partici-
pants were male and 3 were female. Half of the participants 
had at least some prior experience with machine learning, 
computer vision, or both. All participants had taken classes 
in computer science. Although our study audience all have a 
technical background relative to the general population, we 
believe that this makes them well suited to perform better in 
using the non-LabelAR interfaces as they likely have more 
prior understanding how vision algorithms work. We also 
recognize that our study participants have high levels of tech-
nical literacy that will likely make all tested interfaces perform 
better than the general population average. 

Apparatus 
Each study took place in the same office space with one partic-
ipant and one researcher administering the experiment. Each 
participant performed three separate collection-plus-labeling 
tasks using a dedicated app for each task on an iPhone 8plus. 
Each task asked the user to capture a series of images of mul-
tiple objects placed on a round table in the center of the room. 
The object sets were switched out between tasks so that no 
user had the same set twice. The table was covered with a pat-
terned table cloth to ensure the ARKit low-level functions had 
a sufficient amount of visual features for stable plane detection 
and tracking. All three apps were custom built with Unity 
and ARKit 2.0, and were deployed to the same iPhone 8plus 
running iOS 12.2 to ensure that all images were recorded in 
the same encoding, resolution, and aspect ratio (sRGB, 960 
x 540) as the evaluation set. The Scalabel interface was run 
on a 2017 15-inch MacBook Pro running macOS Mojave ver-
sion 10.14.2. The participants were given the choice of using 
a mouse or the laptop track pad for drawing bounding box 
labels. 



 

 

 

 

Figure 6. Depictions of the free-form camera (post-hoc), overlayed, and LabelAR interfaces (left to right) with actual screen shots. 

Procedure 
Upon receiving user consent, the researcher gave a 2-min. 
project intro starting with the following description: 

Let’s say you bought a robot that cleans up your room. You want it to 
detect your personal items so it knows where to put them. LabelAR 
would help you teach the robot to detect those things. So, you’re going 
to take a bunch of pictures of (these) items laid out on the table with a 
few different apps. 

The study purpose and procedural overview were then ex-
plained. 

The first task was to use the free-form camera app to collect 
images of an initial set of objects (Figure 6). A 1-min tutorial 
was given on a practice item to familiarize the participant. 
The initial set of five objects were then introduced. A few 
suggestions, consistent with common computer vision best 
practices were made: 

1. Take images from varied viewpoints. 
2. Balance the number of times each object appears among 

the collected images and make sure each object appears at 
least a few times. 

Participants were given a time limit of seven minutes to take 
as little or as many pictures as they want. They were told 
that the robot would need to recognize objects from various 
locations around a room and that they can move the objects 
around the table if they want, but not to bother flipping the 
object sideways or upside-down. 

The second task proceeded much like the first, with the over-
layed interface (Figure 6). The participant was advised to take 
images of only one object at a time and to ensure the object 
fit in the box on the screen without exceeding the boundaries 
and without appearing too small. The researcher explained 
the other objects on the table should not appear within the box 
or elsewhere in the image. The same guidance on viewpoints, 
time limit, and number of images was given as in the first task. 
A new set of 5 objects was placed on the table. 

The third task used our interface. The researcher opened and 
initialized the app before handing it over by scanning the 
table for a few seconds to let ARKit find low-level visual fea-
tures. The participant was advised to keep the phone generally 
pointed towards the table so that the app doesn’t lose track of 
the table position. The participant was guided to place and 
fit an AR-box over a practice object, first fitting the sides of 
the object by positioning for a top-down view, then adjusting 
box-height from a side view. Then, the participant was told 
how to activate the capture marker system and how to capture 

an individual marker. Similar to the other tasks, a new set of 
five objects was placed in a rough circle on the table. The 
participant was told they should not move the objects once the 
capture markers were activated. Participants did receive ad-
vice on viewpoints or number of images, rather just to ensure 
each marker turns green. 

The post-hoc labeling phase was to use the Scalabel tool to 
label the images collected with the free-form camera app (the 
first task). A 5-minute tutorial was given on how to catego-
rize and draw 2D boxes around objects in the images in a 
time-efficient manner. The participant was advised to label 
overlapping objects to the extents of their respective visual 
features. Similarly, if an object was truncated by the image 
boundary, the participant was advised to label it only if 30% 
or more of the object was visible. 

In our evaluation, tasks were always conducted in order of in-
creasing guidance. While this choice might create an ordering 
effect, we selected this design to minimize transference and 
bias from one task to the next. In particular, we wanted to elicit 
user’s un-aided image collection behavior first. We hypoth-
esize that experiencing an interface that guides participants 
to capture a sufficient amount of out-of-plane rotations might 
create a strong bias for all subsequent interfaces, precluding 
counterbalancing the order. 

Analysis 
In our experiment, we focus on the computer vision task of 
object detection where the goal is to categorize and locate 
objects by placing bounding boxes around them. For each 
set of training images collected by the user study participants, 
we train a Faster R-CNN [26] detection model until conver-
gence. These detection models were then evaluated on one of 
three hold-out test sets of 120 images that feature the objects 
from the respective user collection, scattered about desks and 
floors in new environments unseen during the training phase. 
Roughly half of the test images feature cluttered scenes, with 
some containing occlusions. Each object instance in the test 
set was meticulously labeled with a 2D bounding box. Some 
sample test images are shown in Figure 7. 

We ran our experiments with three sets of objects: Cola bottles, 
toys, and industrial hardware. Each set consists of five distinct 
instances, hand picked for categorical granularity finer than 
a typical category in the ImageNet-1000 set [27]. Thus, a 
detector that is only trained on the ImageNet or COCO dataset 
would fail without additional training images. The objects 
were also chosen to ensure a variety of sizes and shapes: the 



 

  

  

  
   

  

  

    

  

    

  

 

  

  

  
  

  

  

    

  

    

  

Figure 7. Samples from train-test combinations (row-wise) demonstrate the challenging generalization task posed by our experiments. All training 
images were collected in the same room while test images were collected in new rooms, configured for variations in lighting, scale, clutter, and occlusions. 

Object detection performance 

Interface Collect time (min) mAP .25IOU mAP .5IOU 

Post-hoc 15.97 0.40 0.32 
Overlayed 4.82 0.10 0.02 
LabelAR 6.11 0.58 0.22 

Table 1. Results of detection models trained on user-collected images 
and tested on images of the same objects in new scenes. 

bottles are tall, the hardware is flat, and the toys are small. 
Since any level of desired detection performance is a function 
of IOU accuracy and object size, the small objects also add 
rigor to our evaluation by testing robustness to tracking inac-
curacies. In the case of bounding a toy object (∼3x2x2cm), a 
shift of ∼1cm could result in an IOU loss of up to -0.66. This 
is unacceptable if an IOU threshold of 0.5 is needed. 

We constrained our experiment environment to static objects 
placed on a table. This multiple-objects-on-a-table setup is 
common across cognitive development literature, robot learn-
ing (e.g. visual pick and place tasks), and fits with a common 
AR use case of multi-object assembly. 

RESULTS 
We first present and discuss quantitative results of our user 
study, then review qualitative findings. 

Quantitative results 
Compared to post-hoc labeling, collection times improved by 
over 2x with LabelAR, while model performance did not show 
a statistically significant difference. Compared to the existing 
rapid collection application, model performance increased by 
a factor of 5x on average. 

Figure 8 shows collection times and average precision (AP) 
at 0.25 IOU and 0.5 IOU for all users and the three tested 
interfaces. These graphs allow us to investigate the trade-off 
between collection time and object detection performance. 

Table 1 summarizes the mean values for collection time and 
average precision across all users. A 0.5 IOU threshold was 
chosen for our primary evaluation since it is well accepted by 
the computer vision community [28]. A 0.25 IOU threshold 
could be used for applications that are less dependent on local-
ization accuracy e.g. a key-finder app. None of the interfaces 
produce usable detectors at 0.75 IOU (average AP for each 
interface is below 0.1). 

Collection Time 
Repeated measure ANOVAs showed that for log-transformed 
completion times, ANOVA showed a significant effect of in-
terface (F(2,22)=154.8, p<0.001) and the post-hoc pairwise 
t-tests with Bonferroni correction were significant between all
three pairs of groups. Collecting labeled images with LabelAR
(µ = 6.11 min) is significantly faster (p<0.001; by 9.9 min or
2.6× faster) than using post-hoc annotation (µ = 15.97 min).
LabelAR is significantly slower (p<0.01; by 1.3 min or 1.27×)
than the overlayed interface (µ = 4.82 min)

Average Precision 
Repeated measures ANOVA showed a significant effect of in-
terface on AP at IOU thresholds of 0.25 (F(1.37, 15.07)=39.00, 
p<0.001) and 0.5 (F(2, 22)=11.03, p<0.001). The post-hoc 
pairwise t-test showed that at an IOU threshold of 0.25 there 
was not a significant difference in detection performance be-
tween LabelAR (µ = 0.58) and Post-hoc labeling (µ = 0.40), 
but the detection performance of LabelAR compared to 
the overlayed interface (µ = 0.10) was significantly better 
(p<0.001). The post-hoc tests for the AP 0.50 threshold did 
not find a significant performance difference between LabelAR 
(µ = 0.22) and the post-hoc annotation interface (µ = 0.32), 
while the LabelAR detection performance was significantly 
better (p<0.01) than the overlayed interface (µ = 0.02). 

To summarize, LabelAR was more than twice as fast in col-
lecting images and labels than post-hoc annotation, while its 
associated object detection performance was comparable to 
that of post-hoc annotation. LabelAR is somewhat slower to 
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Figure 8. Results for object detection performance versus collection time 
is shown at two IOU thresholds. 

use than 2D overlayed bounding boxes (by 1.3 minutes on 
average). That difference is much smaller than the difference 
to post-hoc annotation. LabelAR significantly outperforms 
overlayed bounding boxes in object detection by at least a 
factor of 5× at both investigated IOU levels. 

Bounding Box Accuracy of Collected Images 
We compared the accuracy of bounding boxes on objects in col-
lected images produced by participants against a meticulously 
labeled “gold-standard” set for randomly chosen participant-
collected images in terms of intersection-over-union (IOU). 
100 images for each condition were sampled at random, and 
a single annotation per image was hand annotated and then 
analyzed against the annotation produced during the study. 
The prior section used IOU of predicted versus gold-standard 
boxes on holdout test images, while this analysis focuses 
on collected bounding boxes versus gold-standard boxes on 
participant-collected training images. 

A one-way repeated-measures ANOVA revealed a statisti-
cally significant effect of interface on IOU (F(2, 22)=59.46, 
p<0.001). A post-hoc pairwise t-test with Bonferroni cor-
rection revealed statistically significant (p<0.05) differences 
between LabelAR (µ = 0.50) and the overlay interface (µ = 
0.45). The mean IOU for the post-hoc interface (µ = 0.90) 
was significantly higher (p<0.001) than for LabelAR. 

Number of Images Taken 
The results we obtained are dependent on the number and vari-
ety of images participants take in different conditions. While 

Figure 9. Object detection performance versus the number of images 
used in training (collected at maximally spaced viewing angles). 

LabelAR heavily guides users, the other conditions offer little-
to-no guidance. We investigate how many images participants 
took organically across three conditions here, then investi-
gate how sensitive LabelAR performance is to the number of 
images and angles captured in the next section. 

On average, users took 29.8 (σ = 14.8) images using the free-
form camera app and annotated anywhere from 1-5 objects per 
image in the post-hoc annotation tool. Users took an average 
of 37.0 (σ = 24.8) images using the overlayed interface, with 
at most 1 annotation per image. Users took exactly 24 images 
in LabelAR, as that is the number of images suggested by our 
guided interface, each image having 5 annotations. 

Angle Ablation for LabelAR 
How many different angles should LabelAR ask a user to col-
lect? To drive design decisions of the LabelAR interface, we 
performed an angle ablation on the coke bottles object set, 
starting with 32 angles and decreasing to 2 by increments of 4 
(and by 2 on the last one). Figure 9 shows a linearly increas-
ing relationship between the number of angles and detection 
performance, up to 32 equally space horizontal angles. That 
is, there is no “knee” in the curve at which point adding an-
gles has a diminishing return on investment in terms of object 
detection performance. For this evaluation set, the more an-
gles we capture of objects in our training data the better the 
performance, so a trade-off must be made in terms of desired 
collection time. The slight dips along the linear trend, includ-
ing the one at the end are likely due to the pattern at which 
angles were dropped out during the ablation. We would expect 
an more linear relationship if every number of angles were 
perfectly spaced apart. 

Qualitative Results 
In a post-study survey, we elicited qualitative responses by 
participants on their experience using LabelAR as well as the 
comparison interfaces. 

Ten of twelve participants stated they would prefer to use 
LabelAR over the other interfaces. One found the overlayed 
interface easier to use, and one stated that their answer de-
pended on LabelAR producing better results (our analysis was 
performed offline after the study so participants could not see 
the performance of models trained on their images). 

https://22)=59.46


 

 

 

 

 

 

Participants appreciated that they were able to place spatially 
stable boxes around real-world objects (four of twelve men-
tioned this explicitly). One commented that it was particularly 
useful to track multiple objects simultaneously. Suggestions 
for improvement largely centered around the efficiency of the 
widgets for initial box placement and sizing, which four par-
ticipants felt could be improved. These difficulties did not 
prevent users from completing their tasks: “I was able to get 
to a high degree of precision (regarding the boxes being drawn 
around the objects)”. These difficulties could be overcome 
with an additional round of refining the interaction design of 
the manipulation widgets. Also, several participants suggested 
dynamically changing the coloring of interface widgets based 
on the underlying image pixels to ensure legibility in a variety 
of settings. 

Six of twelve participants commented positively how the cap-
ture markers provided a very engaging way to capture a variety 
of viewpoints: “I really liked that it felt like a game. I loved 
turning the red vantage point bars green”; “I also liked how 
the red rods guided you on where to point the camera”; “The 
angle targets were fun to use”. However, some orientations 
were harder to capture than others for two participants: “I did 
think it was difficult to capture the rods/ handles that were 
nearly perpendicular to the object”; “In certain capturing 
angles (only at the top) it was sometimes difficult to line up 
two circles”. 

Finally, one participant noted they experienced temporary is-
sues with the underlying tracking technology (ARKit), which 
in some instances lost the table plane and subsequently recom-
puted it several inches above or below the prior plane. As we 
discuss in the Limitations section, LabelAR is fundamentally 
dependent on the accuracy of the underlying AR tracking. 

DISCUSSION 
Object detection performance. We have shown LabelAR 
can be over 5× more precise on average than overlayed bound-
ing box tools, and comparable or slightly better in performance 
to post-hoc annotation tools. This suggests that AR-based im-
age collection tools can have a significant impact on training 
CV models. For this result, average precision was assessed 
at an IOU of 0.25, which is an acceptable evaluation criteria 
depending on the application. For example, in a hypothetical 
key-finder app, a detector does not need highly accurate boxes 
to indicate to a user where the keys are located. Conversely, 
in robotic-grasping applications, highly accurate IOU is very 
important since the robot needs to know exactly where the 
extents of the objects are to place a grabber. None of the 
collection apps resulted in desirable AP’s at an IOU of 0.5, 
the best being post-hoc annotation (AP0.5IOU = 0.32). In other 
words, 68% or more of the predictions made by any of the 
apps at this IOU-level would be false-positives. This suggests 
that more training images or more efficient learning algorithms 
are needed to have quickly-created object detectors perform 
well enough to create actual value for end-users in high IOU 
applications. Future work that can improve the bounding box 
accuracy of LabelAR would be highly valued. 

Collection time. The collection time results from the user 
study show that, on average, LabelAR is over 2× faster than 

post-hoc annotation and competitive with the overlayed inter-
face. The significantly larger time cost with post-hoc anno-
tation is due to the need to label every image individually by 
drawing 2D boxes after the capturing process. With LabelAR, 
there is a relatively small upfront time cost of placing one box 
for each object. The time it takes to move the camera around 
the objects and capture the angle-markers does not depend 
on the number of objects and would stay constant if the num-
ber of objects were increased. The overlayed interface is the 
fastest method since there are no annotation tasks required 
by the user. However, since the user has no control over the 
size or ratio of the 2D box, a lot of bounding box accuracy is 
sacrificed for speed. It is worth noting that the time advantage 
of the overlayed interface over LabelAR would potentially 
disappear as more objects were added. The time needed to 
fully annotate an additional object with the overlayed interface 
scales with the number of images desired, whereas the time 
needed to annotate an additional object with LabelAR is the 
fixed up-front cost. 

2D bounding box accuracy. LabelAR performed similarly to 
the overlayed interface in terms of box accuracy, but post-hoc 
annotation had the best accuracy over all, due to the fine-
level of control the user can exercise in the Scalabel interface 
to place and fit nearly pixel-perfect boxes around objects in 
each image. Some causes of IOU degradation include poor 
box placement by the user (affects all three apps), fixed box 
ratio (overlay interface only), and projection error from 3D 
to 2D boxes due to spatial tracking errors (LabelAR only). 
Underlying AR spatial tracking errors might have significantly 
affected at least one of the collections in our study, where the 
2D box results are all shifted down by about 40 pixels relative 
to the object positions. We are unable to confidently diagnose 
whether this was spatial tracking, user-related errors or both, 
so we included this data in the final results. 

Diverse image perspectives. While the results show that the 
(free-form) post-hoc tool produces superior IOU numbers, 
the AP results show that LabelAR performs comparably well. 
We believe this is due to the diversity in image perspectives 
produced by LabelAR’s guided capture interface. While in 
theory it is possible to produce a similarly diverse set of data 
using the post-hoc tool, our study results show that users 
naturally underestimate the amount of viewing angle variation 
needed. We show AR guided interfaces can ensure that users 
produce quality training sets. 

Number of images taken. Our results show that while, on 
average, users took less images with LabelAR, detection per-
formance is comparable or better. We attribute this to the 
LabelAR interface encouraging the collection of 1 - all five 
instances in every picture, 2 - diverse image perspectives, and 
3 - partial occlusions (which create valuable ‘hard examples’ 
to learn from.) 

Angle ablation. The angle ablation results inform the design 
choice of maximizing the number of angle-markers within 
the constraints of usability and time (too many angle markers 
might be overwhelming in terms of user experience, or take 
too long to capture all of them.) Future work could try to 
establish an upper bound on performance gains from number 



 

  

 

 

 

 

  

 

 

 

of angles and find ways to collect more angles from the user 
without increasing time or decreasing usability. 

LIMITATIONS 
Some limitations of the interface we present are inherent to AR 
devices, while others result from assumptions that we make, 
such as static objects. 

Large-scale collection. Our design is currently optimized 
for small scale tasks. Post-hoc labeling approaches have the 
benefit that a larger labeling task can be parallelized across 
multiple users, e.g. through crowdsourcing. It is conceivable 
to also build a crowdsourced LabelAR repository, where mul-
tiple users contributed images of similar objects. We don’t 
investigate this scaling in our current work, but point to it as 
an avenue of future work. 

Non-planar surfaces. Our interface can position bounding 
volumes anywhere in space. We found that snapping to an 
identified plane increases the speed of correctly positioning 
boxes, so this is the default behavior for the mobile application. 
ARKit detects planes at both horizontal and vertical orienta-
tions. For platforms that reconstruct 3D meshes we could, but 
don’t currently, snap the bounding volumes to the mesh. 

Spatial tracking reliance. The quality of the training data 
produced by LabelAR is influenced heavily by the AR device’s 
ability to maintain spatial tracking of the environment. All 
AR devices we’ve tested our interface on were subject to some 
amount of drift, which manifests in holocubes no longer being 
physically on top of the real-world objects. This can cause 
problems leading to a decreased IOU. 

Static objects assumption. An obvious limitation arises from 
our assumption of static objects, that is the objects must remain 
in-place or else the 3D bounding volumes do not track if those 
objects are displaced in the scene. In other words, if a wearer 
were to pick up and move an object of interest, the video 
annotation capabilities will be lost. We see this as a major 
limitation for machine learning research since humans tend 
to pick things up and manipulate them for closer examination 
when confronted with a novel object (especially toddlers, who 
are constantly engaging in interactive visual learning). 

Also, our approach only works for objects of small enough 
size where it is easy for a user to capture different viewpoints 
efficiently — for example, one couldn’t efficiently get a lot of 
different viewpoints of a large building. 

Cuboid bounding volumes. Although we chose the cuboid 
as our bounding volume shape for easy scaling and fitting, it 
does not always allow for a perfect fit. In particular, there is 
significant space around spherical and cylindrical objects that, 
when projected into image space, can contribute to inaccura-
cies when calculating IOU. 

FUTURE WORK 
In addition to addressing the limitations already discussed, 
there are a few particularly interesting research directions we 
would like to pursue: 

Real-time iterative model training. We are excited about 
possible research directions involving interactive adaptation 

for object recognition. LabelAR’s ability to collect high qual-
ity training data in a short period unlocks a promising research 
direction to explore user interfaces and computer vision meth-
ods for iterative in-situ re-training that leverages user inter-
action. In this work, we have explored interactive collection 
followed by a single re-training step. In future work, we’d like 
to explore what the user can do with the training results and 
how additional in-situ re-training could benefit both the user 
and model. 

Crowdsourcing with LabelAR. We think that LabelAR is a 
first step in creating a crowdsourced image database along the 
lines of ImageNet [10] where collections of objects annotated 
from a large variety of angles can be uploaded and shared. 
There are many significant engineering challenges in building 
such a system, and interface improvements would need to 
be built on top of LabelAR to support a hierarchical labeling 
structure to the data. 

Extensions to robotic cameras. Our data collection inter-
faces need not stay limited to hand-held or head-mounted 
devices. Conceivably, a wearer of a VR headset could control 
a robotic video platform such as a drone to overcome acces-
sibility constraints. For example, an engineer could use our 
system to quickly train a computer vision model to recognize 
particular types of cracks or visible damage on buildings or 
bridges that would be difficult to collect otherwise. 

CONCLUSION 
This paper introduced LabelAR, an augmented reality inter-
face for collecting computer vision model training data. La-
belAR utilizes the spatial tracking technology in AR devices 
to localize bounding volumes over physical objects in the en-
vironment, and uses these volumes to automatically label 2D 
bounding boxes for these objects. It also provides a guided in-
terface to assist users in collecting a variety of viewing angles. 

In a user study, we showed that LabelAR is able to collect data 
significantly faster than baseline post-hoc annotation tools, 
such as Scalabel, while producing comparable quality. We 
also compared LabelAR against an overlayed 2D bounding 
box interface, a tool designed to collect training data very 
quickly, to which LabelAR was able to produce significantly 
better results. In short, LabelAR combines the speed of a tool 
like the overlayed interface with the output quality of post-hoc 
annotation tools. 

We believe our work opens up many avenues for future joint 
computer vision and HCI research with real-time iterative 
model training feedback or large scale crowdsourcing opportu-
nities. We also believe LabelAR can serve as a new benchmark 
in the computer vision community as an in-situ data collection 
tool for training multi-object detectors. 
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