
VirtuWheel
James Smith, Raquel Izquierdo, Caitlin Kwan, Greg Giebel

james.smith,raquel_izquierdo,cykwan,ggiebel@berkeley.edu

ABSTRACT
Amajor problem with virtual reality is the lack of feedback the user
receives during interactions with virtual objects. One solution to
this is to use physical props to provide haptic feedback, but this still
lacks visual feedback cues that may be helpful or necessary for some
tasks. This can negatively affect the user’s sense of embodiment in
the virtual space.

Our project, VirtuWheel, aims to provide visual feedback during
virtual object interactions by using touch sensors on the surface a
steering wheel controller which we can use to visualize interactions
with the steering wheel in VR.

1 INTRODUCTION
Virtual reality (VR) is a promising new field that presents users
the opportunity to experience something that they are unable to
experience in person. However, VR has a serious problem with
embodiment, which is the user’s ability to feel present in and able
to interact with the virtual environment. To improve user embodi-
ment, researchers have begun developing ways to provide physical
haptic responses to virtual interactions. One solution to this is a
set of haptic gloves that use mechanical brakes to stop the user’s
hand when it touches virtual objects [3]. Another approach is to
augment VR controllers to introduce constraints on the motion
relative between them so they can represent objects in a variety
of configurations [5]. These represent active haptic solutions; they
use some generalized mechanism to stop the user’s hand from mov-
ing by providing a normal force. Other researchers have begun
looking at passive haptic solutions, which are objects in the physi-
cal environment that represent virtual objects. This solution uses
the existing normal forces afforded by the physical object to allow
users to naturally reach out and touch them. Research has even
been published recently on ways of using a single physical prop to
represent multiple virtual objects [1].

Because our project involves interactions with a car steering
wheel, we have a natural passive haptic object that we can use.
Unfortunately, using the wheel remains imperfect as the user lacks
a visual representation of their hands in the virtual world.

Most solutions that currently exist involve expensive and glitchy
vision systems that attempt to track user’s hands with cameras and
then render them in VR. Some recent research in this area include
using a Kinect depth camera to create a 3d reconstruction of the
user’s arms [2]. Work has also gone into how to best represent
the user’s hands in a virtual environment, and have found that
often a more realistic representation can lower the user’s sense of
immersion due to being more sensitive to errors [4].

For this project, we attempted to solve this problem in a cheaper
and more reliable manner by using touch sensors on the wheel to
visualize the user’s interactions with the wheel.

EECS 149/249A, December 14, 2018, UC Berkeley
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: VirtuWheel system architecture diagram.

In order to accomplish this goal, multiple topics from the course
were utilized. Sensors were necessary in order to determine where
someone touched the wheel. Input and Output were required to
allow the NRF board to communicate with the sensor circuits, as
well as the laptop running the VR environment. As the NRF board
lacked enough ports for communication with all of the sensors,
GPIO expanders were used. The NRF board was able to communi-
cate with these chips using memory-mapped I/O, a topic covered
in the Memory Architecture portion of the course.

A video for our project can be viewed at https://www.youtube.
com/watch?v=wzfDXCfKiVs.

2 DESIGN AND IMPLEMENTATION
The VirtuWheel system is an accessory for a VR driving system. It
is made up of 32 2x1cm rectangles of conductive fabric attached
with conductive epoxy to a standard steering wheel cover. Each of
these fabric squares is attached by wire to an RC circuit connected
to one of three MCP23017 I2C GPIO expanders. These expanders
communicate with a NRF52832 board using the I2C communication
protocol. The NRF board uses two GPIO pins as the SDA and SCL
pins for I2C communication, enabling two GPIO ports on the NRF
to communicate with all 32 sensors.

2.1 Capacitive Touch Sensing
Underneath each capacitive touch fabric sensor, electrically con-
nected via the epoxy, is a wire leading to one of the 32 GPIO pins on
the three MCP23017 GPIO expanders. Every GPIO pin is connected
to an RC circuit (Figure 2). Each GPIO pin is connected via an
8.2MΩ resistor to Vdd . Each GPIO pin has an internal capacitance
to ground. The GPIO pins are regularly charged and discharged
through software, by periodically setting each pin low and swap-
ping to input. While the sensors are not being touched, they build
charge at a constant rate which is measured in software as the
baseline charge rate. When the sensor is touched, the human body
creates another path to ground, and acts as a capacitor in parallel to
the touch sensor. This increases the total capacitance of the circuit,
increasing the amount of time it takes for the touched touch sensor

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://www.youtube.com/watch?v=wzfDXCfKiVs
https://www.youtube.com/watch?v=wzfDXCfKiVs


EECS 149/249A, December 14, 2018, UC Berkeley James Smith, Raquel Izquierdo, Caitlin Kwan, Greg Giebel

Figure 2: Capacitive touch RC circuit.

to charge. By measuring the time it takes for each sensor to charge
and comparing to a threshold value based on the baseline charge
rate, software can detect which sensors are being touched.

2.2 NRF Software and Communication
In order to communicate with 32 distinct sensor circuits, the NRF
board is connected to three MCP23017 GPIO Expanders. These
expanders communicate via the I2C protocol to GPIO pins 28 and
29 on the NRF board. In implementing the driver for this commu-
nication, the NRF two wire interface (TWI) was used. The TWI is
a protocol very similar to I2C, with most I2C devices being TWI
compatible as well.

The I2C driver for this project uses the NRF’s built in TWI Man-
ager library to control the two GPIO pins. This library allows speci-
fication of a clock rate„ pins to use as SDA and SCL, and the creation
of read and write transfers. By following an Arduino tutorial for
communicating with theMCP23017 and looking over the data sheet,
we created functions to set the mode of pins to input or output, as
well as reading and writing from those pins. Since I2C has a slave
select function, only one set of SDA and SCL lines was needed to
communicate with all three chips because each chip was given a
different slave address. To send commands to the MCP chip, TWI
transfers were created to write specific values to memory-mapped
I/O addresses on the chip. The base address for each chip was deter-
mined by its slave number. Two bytes are sent in each transaction,
the first being a register address related to the command being sent
and the second a value associated with the command, if needed.
Each chip had two "sides", or banks, of 8 GPIO ports. To write to
pins a message consisting of the register address associated with
the side was sent (0x12 for the first side and 0x13 for the second)
followed by a byte representing which pins should be high and
which should be low. Reading was done similarly, but with the
second byte being sent by the slave back to the master.

Serial communication was necessary for the NRF board to send
data back to the laptop. We utilized the NRF52832 serial library to
send data in a JSON format so that it could be easily deserialized on
the laptop. We initialized the library to send data as fast as possible,
115200 bps, so that there was minimal delay in the transmission.
We send 32 integers, each representing the charge time for a single
capacitive touch circuit.

Figure 3: Plot of circuit charge times. The horizontal red line
is the maximum threshold at which we detect touch events.
The vertical blue lines are the centers of clusters of touch
points.

2.3 Touch Detection
After receiving the charge time data over serial, the software on the
laptop can determine which sensors are being touched by compar-
ing each to its own threshold value. Thresholds are determined for
each sensor individually because they all have different discharge
times. We believe this is due to some of them having longer wires
to their piece of conductive fabric. To determine these thresholds,
we observe the sensors when they are untouched. We determine a
max and average value over time, which we refer to as the sensor’s
baseline reading, and set their touch thresholds slightly higher than
their baselines. An example of this is shown in Figure 3.

2.4 Virtual Reality Environment
Once touch points are detected, they are rendered in the virtual
environment. We set up the VR environment using Unity. A 3d
model of the steering wheel was created using Blender. Each sensor
has a known, fixed location on the steering wheel, so if we know
which sensor is touched, we can render a visualization at that
point on the wheel. The first sensor is at the bottom of the wheel,
20 degrees to the right. We enumerate all of the touched points,
rotating around the wheel as necessary.

We considered 2 designs for our visualization. Originally we
were planning on rendering a hand at the center of a cluster of
touch points (see Figure 3). We determined that there were many
edge cases in which this time of visualization would fail. How
would we render a single sensor being touched? We don’t know
which finger is touching the sensor, so we wouldn’t know how to
position the hand. Also, we didn’t want to make an assumption that
every user of our system was equally able bodied. We decided on a
more abstract visualization because we felt it would still provide
the visual feedback mechanism we were looking for, but not be
body-specific. It is also supported by the findings of Singh et al [4].

The final design of the visualization makes the steering wheel
glow blue where touched (Figure 4). The glow has 2 benefits. First,
our sensors are a fixed size, so the user could technically touch the
sensor in two different locations but have the same sensor detect
it. Having touches rendered as a region allows for a believable

2



VirtuWheel EECS 149/249A, December 14, 2018, UC Berkeley

Figure 4: Visualization of two touch events in the virtual en-
vironment.

uncertainty in the visualization. Second, if a user grabs the wheel
and there is a sensor that fails to detect a touch, its neighboring
sensors will overlap with it to rendering a complete touch.

2.5 Challenges
The team encountered a number of challenges in the implementa-
tion of this project, especially when scaling from one sensor to 32
sensors, and thus from one touch point to multiple touch points.

(1) Using a send line on I2C to charge all the sensors simultane-
ously led to discharging all the sensors at the same rate.

(2) Each sensor has a slightly different baseline charge time,
making calibration difficult.

(3) A hardware bug on the MCP23017 caused the board to lock
whenever pin 7 on each side was accessed as the value on
pin 7 changed.

The initial design of the system architecture used a send line to
charge all the sensors simultaneously. This created parallel circuits
between each sensor, which caused them to all discharge at the
same rate whether they were being touched or not. To solve this
issue, we removed the send line and used a single line to both
read and write to the sensors. This is possible because reading and
writing are never performed simultaneously.

Calibration of each sensor was made difficult by several factors.
Firstly, the length of the wires from the touch sensors to their
respective GPIO pins varies, with the wires at the top of the wheel
being the longest. Therefore, each touch sensor is connected to
Vdd with a slightly different resistance. The changes in resistance
from sensor to sensor caused some sensors to have a different
baseline charge time. Secondly, as more people use the wheel and
the touch sensor cloth degrades, the electrical properties of the
capacitive touch sensor changes, which causes the baseline charge
time to shift. Lastly, different people have different skin resistances,
so the measurement of the charge time can vary from person to
person. These problems are solved by observing the circuit charge
times at startup and adjusting the threshold for sensors that have
different charge times, and observing for false positives during use
of the system so that the thresholds can be adjusted over time. The

thresholds are set to just over the baseline charge time so that the
system will work for most people with typical electrical properties.
However, the system still does not work as consistently for people
whom the system is not calibrated for. This is due to the changing
electrical properties from body to body, which cannot be predicted.
Auto-calibration may help to solve this problem in the future.

Lastly, a hardware bug on the MCP23017 was discovered by the
team after the proto-boards had been soldered. This bug causes the
MCP23017 to lock if pin 7 on any side was accessed as the value on
that pin changes. The bug caused the system to crash periodically
as pin 7 was accessed, and the NRF52832 would have to be reset.
The bug also led to touch not being consistently detected at 12
o’clock, 3 o’clock, 6 o’clock, and 9 o’clock on the wheel (where the
sensors connected to pin 7 on each side were located). To fix the
crash issue, the wires connected to the four faulty pins (originally,
only two MCP23017 boards were being used, each with two sides)
were rerouted to a third MCP23017, where they were connected to
four non-faulty pins. Due to time constraints, the third MCP23017
is located on a prototyping breadboard, which has additional capac-
itances over the soldered breadboards. This causes those four pins
to have a different RC circuit from the rest of the pins. Readings
from those sensors can still be inconsistent but are more consistent
than previously and do not lock the board.

3 RESULTS AND EVALUATION
We evaluated VirtuWheel in two ways. First we did a performance
evaluation of each sensor, detecting how many physical touch
events were correctly detected and rendered in the virtual envi-
ronment. Then we ran an exploratory user evaluation to see how
different people were able to interact with the wheel while using,
and not using, VirtuWheel.

3.1 Performance Evaluation
To test VirtuWheel’s ability to detect various types of touch events
with different people, we ran an experiment where members of our
group touched the wheel in various ways.

(1) Each sensor was touched on it’s own.
(2) Pairs of adjacent sensors were touched by the same hand.
(3) Pairs of non-adjacent sensors were touched by different

hands.
(4) The steering wheel was grasped in a natural fashion at 8

points.

As these experiments were carried out, the number of touch
locations that the system detected were counted. This led to 576
total individual sensor touch events that we could analyze. The
results of these experiments are displayed in Figure 5.

If we include the 4 problematic sensors, our success rate in de-
tecting touch events is 85% across all experiments. As discussed
earlier, we believe that if these sensors had been built in the same
way as all the others, they would not have been an issue. We also
analyzed the recorded touch events that did not use these sensors,
and can report a 94% accuracy. We believe this to be a more accu-
rate representation of how our approach succeeds in detecting and
visualizing touch interactions.

3



EECS 149/249A, December 14, 2018, UC Berkeley James Smith, Raquel Izquierdo, Caitlin Kwan, Greg Giebel

Figure 5: Touch Event Detection Success Rate.

3.2 Exploratory User Evaluation
We ran an exploratory user evaluation of 6 participants, 3 male
and 3 female, all licensed drivers with a variety of VR experience,
recruited by word of mouth. We ran an A/B test, where group
A had the VirtuWheel interaction disabled, and group B had the
interaction enabled. The experiment consisted of a variety of tasks
interacting with the wheel.

(1) Grab the steering wheel in your natural driving position.
Turn the wheel 180 degrees to the left and right.

(2) Grab the steering wheel at the 10 and 2 clock positions. Turn
the wheel 180 degrees to the left and right.

(3) Grab the steering wheel at the 8 and 4 clock positions. Turn
the wheel 180 degrees to the left and right.

(4) Grab the steering wheel (with either hand) at the 12, 3, 6,
and 9 clock positions.

(5) Users were invited to interact with the wheel in any way
they wanted for a short time.

After the experience, users were given the Witmer & Singer
Presence Questionnaire. [6]

Results from the questionnaire were mixed.We believe this is due
to the fact that we ran an A/B test and the participants had a variety
of VR experience, so they had no common baseline to compare
their experiences against. However, some interesting qualitative
observations were made in the study. During the task where we
asked participants to put their hands in the clock positions, we
noted that several of the participants in group A either missed the
wheel entirely, or grabbed incorrect positions. All participants in
group B were able to position their hands correctly. We believe they
were able to use the visual feedback provided by VirtuWheel to
accomplish this. Moving forward, more studies should be performed
to explore this phenomenon.

4 DISCUSSION
Overall we consider the project to be quite successful at visualizing
touch events, but more work can be done to make the system fully
robust.

First, we noticed that certain sensors’ baseline charge times
would change as the environment changed. To solve this issue we
could introduce an auto-calibration feature. Because we can reliably
detect when touch events happen, we should be able to read from

Figure 6: User study setup.

non-touched sensors and average out their baseline readings over
time. This would allow their thresholds to increase as needed.

Another improvement would be to switch to the SPI version
of the GPIO expander, the MCP23S17. This would allow us to use
the problematic input pins, requiring only 2 chips. It would also
allow us to sample at 10MHz, 2 orders of magnitude higher than our
current setup. We think that a higher sample rate would allow us
to characterize touch event signals better by allowing more precise
baseline values.

Another important step would be to verify that this technique
generalizes to other types of interactions. Because of our qualitative
finding that having visual corrective feedback helps with precision
grasping interactions, we could develop another device that could
leverage this. For example, we believe this technique would help
a lot when interacting with objects that have a dangerous part to
touch (ex. soldering iron).

While it is likely infeasible to instrument all surfaces with capac-
itive touch capabilities, we think that engineers who are building
specific props for use with virtual reality should consider adding
capacitive touch surfaces so that the interactions with these props
can be visualized.

A video for our project can be viewed at https://www.youtube.
com/watch?v=wzfDXCfKiVs.

REFERENCES
[1] Mahdi Azmandian, Mark Hancock, Hrvoje Benko, Eyal Ofek, and Andrew D.

Wilson. 2016. Haptic Retargeting: Dynamic Repurposing of Passive Haptics for
Enhanced Virtual Reality Experiences. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA,
1968–1979. https://doi.org/10.1145/2858036.2858226

[2] Michael Bottone and Kyle Johnsen. 2016. Improving Interaction in HMD-Based
Vehicle Simulators Through Real Time Object Reconstruction. In Proceedings of
the 2016 Symposium on Spatial User Interaction (SUI ’16). ACM, New York, NY, USA,
111–120. https://doi.org/10.1145/2983310.2985761

[3] Inrak Choi and Sean Follmer. 2016. Wolverine: A Wearable Haptic Interface for
Grasping in VR. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology (UIST ’16 Adjunct). ACM, New York, NY, USA, 117–119.
https://doi.org/10.1145/2984751.2985725

[4] Avinash Kumar Singh, Hsiang-Ting Chen, Yu-Feng Cheng, Jung-Tai King, Li-Wei
Ko, Klaus Gramann, and Chin-Teng Lin. 2018. Visual Appearance Modulates
Prediction Error in Virtual Reality. IEEE Access 6 (2018), 24617–24624.

4

https://www.youtube.com/watch?v=wzfDXCfKiVs
https://www.youtube.com/watch?v=wzfDXCfKiVs
https://doi.org/10.1145/2858036.2858226
https://doi.org/10.1145/2983310.2985761
https://doi.org/10.1145/2984751.2985725


VirtuWheel EECS 149/249A, December 14, 2018, UC Berkeley

[5] Evan Strasnick, Christian Holz, Eyal Ofek, Mike Sinclair, and Hrvoje Benko.
2018. Haptic Links: Bimanual Haptics for Virtual Reality Using Variable Stiff-
ness Actuation. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (CHI ’18). ACM, New York, NY, USA, Article 644, 12 pages.
https://doi.org/10.1145/3173574.3174218

[6] Bob G Witmer and Michael J Singer. 1998. Measuring presence in virtual environ-
ments: A presence questionnaire. Presence 7, 3 (1998), 225–240.

5

https://doi.org/10.1145/3173574.3174218

	Abstract
	1 Introduction
	2 Design and Implementation
	2.1 Capacitive Touch Sensing
	2.2 NRF Software and Communication
	2.3 Touch Detection
	2.4 Virtual Reality Environment
	2.5 Challenges

	3 Results and Evaluation
	3.1 Performance Evaluation
	3.2 Exploratory User Evaluation

	4 Discussion
	References

